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Monte-Carlo calculations are performed for the model Hamiltonian ~ =  
Yl [(r/2) #2(i) + (u/4) #4(i)] + Y<v> (C/2)[#(i) - q~(j)]2 for various values of 
the parameters r, u, C in the crossover region from the Ising limit (r ~ -oo,  
u ~ +or) to the displacive limit (r = 0). The variable ~b(i) is a scalar continuous 
spin variable which can lie in the range - o o  < ~6(i)< +0% for each lattice site 
(i). ~b(i) is a priori selected proportional to the single-site probability in our 
Monte Carlo algorithm. The critical line is obtained in very good agreement 
with other previous approaches. A decrease of apparent critical exponents, 
deduced from a finite-size scaling analysis, is attributed to a crossover toward 
mean-field values at the displacive limit. The relation of this model to the 
coarse-grained Landau-Ginzburg Wilson free-energy functional of Ising models 
is discussed in detail, and, by matching local moments (r  (~4(i)) to 
corresponding averages of subsystem blocks of Ising systems with linear dimen- 
sions l=  5 to l=  15, an explicit construction of this coarse-grained free energy is 
attempted; self-consistency checks applied to this matching procedure show 
qualitatively reasonable behavior, but quantitative difficulties remain, indicating 
that higher-order terms are needed for a quantitatively satisfactory description. 

KEY WORDS: Continuous Ising model; order-disorder; displacive; Monte- 
Carlo simulation; finite-size scaling; critical exponents. 

1. I N T R O D U C T I O N  

Since the  p i o n e e r i n g  w o r k  of  K a d a n o f f  ~ a n d  W i l s o n  ~2) it is well-  

e s tab l i shed  tha t  the  c o m o n  fea tures  o f  the  b e h a v i o r  d i sp l ayed  by v a r i o u s  
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systems near their critical point reflect a deeper universality in the spectrum 
of configurations, coarse-grained to eliminate system-specific microscopic 
details. This coarse-graining procedure, as discussed by many 
authors, (1'3-1~ may be carried out by dividing the system into "cells" or 
"blocks" of linear dimension l, where l exceeds microscopic lengths (lattice 
spacing or interaction range) but is smaller than the correlation length ~. 
Instead of the microscopic Hamiltonian of the system, one then studies, 
rather, the "coarse-grained Helmholtz free-energy functional ''(5,m) (also 
called "Ginzburg-Landau-Wilson Hamiltonian" WGLW) or the related 
coarse-grained, order-parameter, probability density function. (6-9) The lat- 
ter quantity often is considered in the context of computer simulations, 
where it is analyzed to obtain critical properties/6"7'1xl and locate (first- 
order) phase boundaries3 ~2) The coarse-grained free energy forms the basis 
of theoretical approaches to numerous problems, including spinodal 
decomposition and nucleation, (3'4'1~ wetting, ~3) the surface tension and 
interface profile of gas-liquid and liquid-liquid interfaces, (14) and, last but 
not least, the starting point for the renormalization group theory of critical 
phenomena.(2'~s'~6) 

However, despite its crucial conceptual importance, the explicit 
relationship between the microscopic Hamiltonian and the associated 
Ginzburg-Landau-Wilson Hamiltonian is hardly ever worked out. Let us 
discuss this problem for the Ising Hamiltonian on d-dimensional cubic lat- 
tices (d = 2, 3, 4) of lattice spacing a 

~Ising = -- ~ Jkk 'Sk  Sk' (1) 
k~=k' 

where spins Sk = ___1 are located on the lattice sites and interact with 
exchange couplings Ykk' in zero external field. Dividing the lattice into cubic 
blocks of linear dimensions l, we define a block coordinate r as 

qS,(i) = (1/l a) ~ Sk (2) 
k e ith cell 

Note that the block center of gravity is denoted by 2, and we may consider 
the block coordinate q~t either for a continuum of sites {2} or again as a 
regular lattice of sites {i} (with rescaled lattice spacing-the original lattice 
spacing is taken as unity). 

Now it is assumed that the Boltzmann factor P({Sk }) 

P( { S k } ) = (1/Z) exp { - ~ i s i n J k B  T} (3a) 
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which describes the probability that a configuration {Sk} occurs in thermal 
equilibrium, can essentially be replaced by [for Jkk' being ferromagnetic] 

1 
P( { 05,(i) } ) = ~ exp [ -- JfOLW { 05,(i) } ] (3b) 

The Ginzburg-Landau-Wilson Hamiltonian for the case of a lattice of 
discrete sites {i} is given by 

1 2  l u,054(i)+6v,056(i)+... J ~GLW{ 051(i) } = Id~ ['~ r105,(i) +-~ 

l d  + ~ l ~, Ct[051(i)-- 05,(j)]2/12 + "'" (4a) 
(0 )  

where (i, j )  denotes a sum over nearest-neighbor pairs on the lattice for- 
med by the cells, while for the continuum case, JfGLW{05(2)} is given by 

.[12 rt' 41 Ul' i~ 14 + 61 ~GLW { 05(3~) } = f d.• 05/2(2) 3 V (s /3; 05/6(s 

1 , 2 ] 
+ " "  + ~  Cl(V05,(s + "'" (4b) 

The factor (keT) 1 in eq. (3a) has been absorbed in the coefficients r,, uz, 
v t, C l or r;, u;, v;, C;,..., respectively. 

Now, it is rather generally believed that the universal critical behavior 
of the models eqs. (1, 4) is identical, apart from short wave length proper- 
ties which are still contained in eq. (1), (3a) but are sacrificed by the 
coarse-graining procedure which leads to eqs. (3b, 4). This should not mat- 
ter since the short wavelength behavior should be irrelevant at criticality, 
although this universality has been occasionally questioned. (17'~s) However, 
even if one accepts that eqs. (1), (4) belong to the same--Ising--univer- 
sality class, there remain a number of questions: 

(i) What is the precise correspondence between the couplings Ykk,/k~T 
of the original model and the coupling constants r,, ut, v,, Ct .... of its 
coarse-grained version? 

(ii) For which range of temperatures around Tc is the mapping of eq. (1) 
to eq. (4) accurate? 

(iii) Is it a good approximation to reduce ~f~GLW to the 05 4 field theory 
from the outset [omitting the term v,05 6 and higher-order terms, as 
well as higher-order gradient terms in eq. (4b)? Renormalization 
group theory/15) shows that these terms are irrelevant to the universal 
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critical behavior near d = 4 dimensions, but they yield corrections to 
scaling and thus limit the asymptotic critical region. 

(iv) If the interactions Jkk' are (at least partially) antiferromagnetic, 
eq. (1) may lead to critical behavior belonging to several different 
universality classes, e.g., the X Y  model with cubic anisotropy, <19) in 
which case ~ L W  has a qualitatively different structure involving a 
vector field q~l(~?) rather than the scalar field involved here. The 
question then arises, for a given set of interactions (Jkk'}, how tO 
clarify the appropriate structure of o~gGL w. 

(V) For studying universal critical phenomena we wish to consider a 
coarse-graining satisfying 1 ,~ l ~ ~, with l staying finite at To where 
diverges. Then, near T c one can assume that ut and C~ are tem- 
perature-independent positive constants while rt has a regular tem- 
perature dependence, rt~ fz(T-TMF)/T, T MF being the critical tem- 
perature of the mean-field approximation applied to eq. (4). For 
other applications of the coarse-grained free-energy functional, 
however, such as spinodal decomposition, (3'4'1~ one wishes to have 
l ~  ~. Then the coefficients rt, uz, vt, Cl,... in eq. (4) must get a 
singular temperature-dependence, about which relatively little (5-9) is 
known. 

Attempts to address some of these questions have been made by 
Bruce ~8'9) on the basis of approximate recursion relations/2) and by Monte- 
Carlo methods. (6'7) In principle, by Monte-Carlo study of an Ising model 
one could sample Pt({~b(i)}) and then reconstruct the appropriate 
~GLw{~bt(i)}. In practice, however, such a program is prohibitively dif- 
ficult; hence, so far, instead of the full distribution function P~{~z(i)}, 
which is a function of all block magnetizations, only the reduced dis- 
tribution function pt(O~t) of a single subsystem block (6'7) or of two 
neighboring subsystem blocks p~[Ost(i), ~bt(j) ] have been obtained, (7) all 
other block magnetizations being averaged over. From this work, rough 
guesses of the coefficients rt, ut could be obtained (7) as a function of the 
coupling constant J/T in the vicinity of the critical temperature in a three- 
dimensional nearest-neighbor Ising model. However, Cl can hardly be 
obtained reliably in this manner. 

In the present paper, we are again studying the relation between the 
microscopic and the coarse-grained Hamiltonian with Monte-Carlo 
methods, but with the approach (complementary to Refs. 6, 7) to study 
directly the ~4 model [eq. (4a) with vt = 0 and all higher-order terms omit- 
ted]. We obtain both global (collective) properties of this model as a 
function of its parameters r t, ut, Cl [the index l henceforth being omitted], 
as well as local ones, such as the single (block-)site probability distribution 
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p[q~(i)] and its moments. We then can elucidate the mapping from ~sing 
to ogY~Lw by comparing the present pi th( i)]  with the pr int ( i ) ]  of the Ising 
model, obtained previously for various block sizes/.(6) 

Apart from the interest from the point of view of coarse-graining, the 
~b 4 model on a lattice [remember that ~i can adopt any real value, - ~ < 
qs(i) < +~- ]  

C 

is also of great interest as a microscopic model of structural 
transitions (2~ (in particular, the case d = 2  is a model for surface 
reconstruction.(28'29~). Equation (5) has been studied as the prototype 
model displaying crossover from the "order-disorder" limit [for C fixed but 
u ~ ~ ,  r ~ - ~ ,  eq. (5) becomes a nearest-neighbor Ising model (2~ to 
the "displacive" limit [for r ~ 0, C, u fixed the phase transition is depressed 
to zero temperature and the critical behavior is Gaussian. (2~ Hence we 
discuss our work in the context of this problem, too, and compare our 
numerical results to related previous calculat ions (22'24'28'3~ whenever 
possible. 

In Section 2 we give a brief reformulation of the model eq. (5), 
exploiting the well-known fact (24'26'28) that one of the three parameters r, u, 
C is redundant and can be absorbed by rescaling the field q~i; this also 
serves to make the relation to previous work more explicit. In Section 3 we 
describe our Monte-Carlo procedure and in Section 4 we present our "raw 
data" for various lattice sizes on the square lattice. Temperature-depen- 
dence of (~b(i) 2) and of (~b~(i)) for Ising models with various l and 
dimensionalities is discussed in Section 5 in view of the interest in this 
quantity, since the analogous local density fluctuation (p2) loc-- (p)2  is 
deduced from vibrational Raman spectra of N2 near the gasqiquid critical 
point (32) and recent confusion on the theoretical interpretation of this 
quantity.(33) Section 6 gives a preliminary discussion of the critical behavior 
of the model eq. (5) by finite-size scaling methods, (34) similar to previous 
applications to Ising problems. (35'36) However, our Monte-Carlo data are 
far too rough to settle the issue of whether a violation of universality 
occurs;  (18'37) rather, they show the limitation of finite-size scaling analyses 
of Monte-Carlo data in a crossover region. Finally, Section 7 turns to the 
problem of constructing the direct correspondence between the nearest- 
neighbor Ising model and the corresponding coarse-grained free energy 
near criticality, while Section 8 summarizes our conclusions and gives an 
outlook for future work. 
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2. M E A N - F I E L D  A P P R O X I M A T I O N  A N D  RESCALINGS 
OF THE M O D E L  

In the mean-field approximation (MFA) PoSsible spatial fluctuations 
of the order parameter are neglected, and hence the second sum on the 
right-hand-side of eqs. (4a, 5) can be neglected in the partition sum Z = 
Tr{~(i)} e x p [ _  ~tf~,]. This means that for r < 0 ( T <  TcMF), the free energy 
is minimized by two homogeneously ordered phases with order parameter 

~MF~ 

SMF = +_(--r/u) 1/= (6) 

while ~MV-  0 for r >f 0 (T>~ TfF). If we add a term involving a wave-vec- 
tor dependent field to eq. (5), -Zq~(i) h cos(4. ~i), and treat the resulting 
perturbation of the homogeneous state eq. (6) in linear response, we find 
the wave-vector dependent susceptibility ZMF(q) 

7~(4)=ZMV/(I+qZ{~F), ZMV= (_2 r )  1, {MF=[C/(--2r)] 1/2 (7) 

The mean-field approximation becomes valid if the correlation length 
amplitude tends to infinity; i.e., the parameter C ~ o% with r and u keeping 
fixed (this corresponds to the case of long-range forces), or r ~ 0, with C 
and u fixed (the displacive limit). 

One possible rescaling of Jr#4 is obtained by normalizing ~b with the 
mean-field order parameter, i.e., in terms of m(i) -  ~(i)/~, which yields 

<U> 

This normalization is essentially the choice of Ref. 24. We can identify the 
parameters K, L (we denote L henceforth as L to avoid confusion with the 
lattice size) of Ref. 24 as K=--rC/u=2(r~MF)Z/u,  L=r2/4u.  7",--* oo 
corresponds to the Ising limit, L ~ 0 to the displacive limit. [Similarly, we 
can identify the parameters 0, K of Ref. 28 as O=(2~v)  -1, K= 
(C/u)(1 + 0), where 0 = 0 corresponds to the displacive limit and O = oo to 
the Ising limit]. If we interpret eq. (5) in the sense of eq. (4a) as the result 
of coarse-graining of a more microscopic model where lengths still are 
measured in units of the original lattice spacing, we have 

- -  <~> [ m ( i ) -  (9) 

Thus, if one would choose l =  ~Mv [note that ~ V  is finite at the true Tc 
due to the depression of Tc from its mean-field value to lower temperatures 
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due to fluctuations] ~'~GLW would have a single parameter, ldr2/u while in 
the general case there are two. In terms of a ferromagnetic Ising model 
eq. (1), the two relevant parameters are T/Tc and the range R of the 
interaction. Choosing a particular value of l, the Ising model with 
{T/Tc, R} is then supposedly mapped onto eq. (9) with some parameters 
{Idr2/u, (~av/l}. Of course, there should be a simple proportionality 
between R and (My when R --+ 0% and since in this limit eq. (9) trivially 
follows from an expansion of the molecular field results for the original 
Ising model, we are interested mainly in the opposite limit where R is 
small, e.g., the case of nearest-neighbor interaction in eq. (1) only. 

An equivalent rescaling of eq. (5) is obtained by rearranging the term 
[q~(i) _ qs(j)]2 = q52(i) + q~2(j) _ 2~(i) ~( j )  which yields 

 o4=zl 
i 2 <~> 

Choosing now [for r + 2dC < 0 the normalization re(i) = 
~(i)/( -- (r + 2dC)/u) 1/2, one finds 

[1  , ] 
Jg9'*'4=~2 -- 5m2(i)+-~m4(i) --fl 2 m(i)m(j) ( l l a )  

i (6> 

with ~ = (r + 2dC)2/u, fl = -C(r  + 2dC)/u. Of course, this normalization of 
the model is rather arbitrary, but it can be uniquely related to other 
choices of normalizing the model eq. (5); e.g., the parameters K and L of 
Ref. 24 are related to ~, fl, as K=fl(l+2dfl/#~), L = ~ ( l + 2 d ~ / ~ ) 2 / 4  [or, 
vice versa, ~ = 4 L -  4dK+ (d2K2/L), /7= K-(dK2/2L)].  The advantage of 
the normalization eq. (1 la) is that it very clearly exhibits the Ising limit; if 
~--+ ov the variables m(i) are essentially restricted to __+1 and one is 
explicitly left with the Ising model and with coupling constant J/k8 T= ft. 
Thus, one can immediately infer one limiting case of the critical line 
/ 7= L ( ~ )  in the ~, /7 plane where the phase transition from order to dis- 
order occurs, namely lim~_ ~/7r = (J/kBTc)~sing. The critical line ~(c~) 
ends in the point ~ = / 7 =  0; this point is not a special limit in the nor- 
malization of eq. 8 or of Ref. 24, respectively, it simply corresponds to the 
choice K =  (2/d)L, which leads to ~c(~) ~ (~KJ2d) 1/2 for ~ --~ 0. In between 
these limits we expect the critical line /7~(~) to increase monotonically, 
which is borne out by the numerical calculation (Section 4). 

For r+2dC>O, on the other hand, we have to choose the nor- 
malization m(i) - ~(i)/(((r + 2dC)/u) 1/2) to find 

J~9~4=~ Z [  l~m2(i)+-~m4(i)l ]--  fl ~ re(i)m(j) ( l lb )  
(,j> 
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with ~ = (r + 2dC)2/u, ]1 = C(r + 2dC)/u, and the transformation formulas 
K =  -[1(1 - 2d[1/~), L = ~(1 - 2d[1/~)2/4, or a = 4L - 4dK+ (d2K2/L), [1 = 
-K+(dK2/2L).  The displaeive limit occurs for ~=2d[1, and since the 
critical line ends there in a point Kc=0,  L = 0 ,  this corresponds in 
eq. ( l ib )  to the limit ~, [1~ ~ [~o([1)/[1= 2d]. 

3. M O N T E - C A R L O  PROCEDURES 

In simulating directly a model such as eq. (11) by standard Monte- 
Carlo procedures, (38) one encounters the difficulty that the local variable 
m(i) is not bounded but rather can exist in the full interval, - m  ~< 
re(i) <~ +oe. The obvious recipe to replace this interval by a finite one, 
- a  ~m(i)<~ +a, either gives rise to serious inaccuracies due to truncation 
effects (if a does not exceed unity significantly, as done in Ref. 31) or leads 
to a very poor convergence, particularly for large ~, since then most of the 
trial values m(i) chosen would be such that the single-site probability p~ 

Pi oc exp{ - ~ [  T �89 + ~m4(i) ] } (12) 

would be very small. Note that the two signs in eq. (12) correspond to the 
two cases of eqs. ( l la) ,  ( l ib) .  Clearly, then, it is preferable to already 
generate the trial values of re(i) with the single-site probability eq. (12) for 
large & In order to do this efficiently we proceed as follows: We split the 
Hamiltonian eq. (11) into two parts 3 

2t~ = ~ + W2, 9fl = --[1 ~ m(i) re(j) 
<U> 

~ I 1  1 1 9f2 = ~ -T- ~ m2(i) + m4(i) 

(13) 

and transform the expression for the average of an observable A(X) in the 
canonical ensemble (phase-space points being symbolically denoted by X) 

1 (. 
( A )  = -~ | dX A(X) exp[ - afr (X) - o.~f2 (X) ] 

,) 
(14a) 

= f dX exp [ - ~ (X) - ~2(X) ] (14b) 

3 Related ideas have been used to carry out  the Monte-Carlo integration step involved in the 
real-space renormalization group approaches of Refs. 24 and 25. An elegant alternative to 
the present procedure is used by Bruce. (47) 
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by defining a new measure 2(X) as 

1 
d2(X) =~-~ exp[ - o~2(X) ] dX (15a) 

which yields 

1 (, 

( A )  = ~ J d2(X) A(X) exp[ - ~r ] (15b) 

Note that Z" in eq. (15a) is fixed by the normalization S d2(x)= 1. 
Obviously, 2 can vary between 2 = 0 (for ~ ~ oe ) and 2 = 1 (for ~,ug 2 ~ 0); 
thus, a homogeneously distributed set of points in the phase space 
( - oe < x < + oo ) is mapped on the interval [0, 1 ] with a density governed 
by the factor e x p [ - ~ ( x ) ]  by means of the cumulative distribution 

i" ,/f+" C(y)  = dX(x d,~(x) 
- e l . )  - c~o 

m 2 m 2 

= -oo dm rj+~exp I exp[ I 
(15c) 

In practice it is convenient to restrict the integration in eq. (15c) up to a 
cutoff parameter ___ Ymax instead of -t-o% which in the present calculation 
was chosen as Ymax = [1 + (26/~)m] I/2, which means we cut off the weight 
function at a value exp [ -6 .5 ] .  Now, dividing the interval - y  . . . .  Y~ax 
into n intervals with length 2y~,jn, we tabulate the values of C(y) for any 
of these intervals. Thus, we may generate spin variables m e [ - y . . . .  Y ... .  ] 
according to the measure eq. (15a) by just generating random numbers in 
the interval [0, 1-]. Then, entering these values into the table, we obtain the 
corresponding values of the variable m. We found n = 1000 to provide suf- 
ficient accuracy for present purposes. 

Having thus chosen a new trial value m(i) for a site i from this table, 
the Boltzmann factor required to compute the transition probability in the 
standard Metropolis approach ~3s) involves the Ising-type Hamiltonian 
[(eq. (13)] only. 

For example, Fig. 1 shows the single-site probability distribution for 
three cases which were extensively studied, ~ =  0.333 for the +sign in 
eq. (15c) and ~,=0.175 and ~=2.5  [for the - s ign  in eq. (15c)]. These cur- 
ves, sampled for ]~= 0, simply represent eq. (12), which is a check on the 
accuracy of the procedure. 
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Fig. I. Probability distribution Pi of the local spin variable re(i) for ~ = 0 and (a) ~ = 2.5 and 
(b)~=0.175,  as obtained from the sampling technique based on eq.(15). The interval 
[ -  Y~ax, + Y~,ax] is divided into one hundred equal subintervals for this histogram, and 1.106 
random numbers were used to generate it. These cases refer to eq. ( l la) ,  while case (c) refers 
to eq. ( l i b )  and the choice c~ =0.333. 
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The quantities calculated in the present study are the order parameter 
J ~ L  

~rL= ( M ) ,  M = - ~ m ( i )  / N  (16) 

for a number of lattice sizes up to N = L x L = 60 x 60, and applying fully 
periodic boundary conditions. We also obtain the susceptibility ZL 

ZL = N [ ( M 2 )  - ( M )  2 ] (17) 

and the reduced fourth-order cumulant 

( M  4 ) 
tot __ U r - 1 3 ( M 2 ) 2  (18) 

While eq. (18) is a characteristic measure of the magnetization distribution 
of the total system, it is also interesting to compute the corresponding 
quantity of the local single-site magnetization probability distribution p(m), 

U l~ 1 (m4)  
3(m2)Z (19) 

Note that U 1~176 can be calculated trivially from eq. (12) only for ~ = 0 ,  
where the spins re(i) at different sites i are not coupled, while in the 
presence of the coupling ~ [eq. (13)] the resulting single-site 
magnetization distribution gets modified, as will be discussed below. 

Typically the system was started in an "ordered" configuration (i.e., 
re(i) = Ymax for all i) and several hundred Monte-Carlo steps per site were 
discarded in order to allow the system to reach equilibrium, while runs of 
2.104 Monte-Carlo steps per site were performed for obtaining the 
averages, eqs. (16)-(19). Of course, in the critical region for L ~> 20, larger 
equilibration times are needed to obtain very precise data. 

4. M O N T E - C A R L O  R E S U L T S  

Figure 2 shows the variation of the order parameter 3~r with growing fl 
for three cases, namely ~ = 0.333 for eq. (1 lb)  [this yields a single peak in 
the single-site distribution, cf. Fig. 1, and hence a single minimum in the 
"single site potential"] and [for eq. ( l l a ) ] ,  ~ = ~  (since ~ = 0 . 1 7 5 ,  this 
corresponds to a weakly modulated single-site potential 4 ;  cf. Fig. 1) and 
~=2.5  (strongly modulated single-site potential). In the latter case, the 
local cumulant U 1~ also is included; it is seen that U 1~ is rather large also 
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Fig. 2. Variation of the order parameter -~L, eq. (16), with ~ for the model eq. (1 l a), and 
(a) ~ = ~, (b) ff = 2.5, and for the model eq. ( l l b )  for (c) ~ = 0.333. Lattices with linear dimen- 
sins L = 5, 7, 10, 14, 20, 30, and 60 are shown as indicated. The thick line in (b) shows the 
variation of the local cumulant U 1~ (within the thickness of this curve the various values of L 
coincide). 
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Fig. 2 (continued) 

in the disordered regime (~ < ~c), reflecting the pronounced order~lisorder 
character of the transition in this case. Note that while kSr shows the typical 
finite-size "tails" in the disordered regime, U ~~176 depends on the finite total 
lattice sizes only very little. The values of the critical coupling ]~c are 
obtained from the cumulant intersection method(6); see below. What is 
noticeable from Fig. 2 is also the different scale of the order parameter--in 
the case of ~ = ]~ (o7 c = 0.175) the order parameter saturates in the ordered 
state at a value twice as large as for ~=2.5,  and in both cases this 
saturation value is distinctly larger than the maximum of the single-site dis- 
tribution, which is at ~ f =  1. This fact already shows that for ~c = 0.174 the 
system behaves non-Ising-like although we are still far from the "displacive 
limit ''(2~ which occurs for the Hamiltonian eq. ( l lb )  and ~ ~ ~ ,  f l=  ~/4. 
Apart from this feature, both the finite-size behavior of the magnetization 
(Fig. 2) and the susceptibility (Fig. 3) are qualitatively similar to related 
data for the two-dimensional Ising model. (35) Note that for the case of 
eq. ( l lb )  ~ = 0.333, there is a broad regime of fl where 3~ L increases nearly 
linearly with ~ before it saturates. This behavior reflects crossover to the 
displacive limit. We return to these data in Section 6 below. Our estimates 
for the critical point are based on the cumulants Uk ~ of the total 
magnetization eq. (18); again the qualitative behavior (Fig. 4) is similar to 

822/44/5-6-4 
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results for the two-dimensional Ising model) 39) In addition, the data are 
consistent with a limiting behavior 

l i ra  U~ ~ I j =  ~fc : U~ ~ 

with a value tot U,  = 0.60 + 0.01 which is consistent with the value U~ ~ ~ 0.61 
obtained in previous Monte-Carlo work on two-dimensional Ising 
models (39) (and the very accurate result U,~ 0.618 due to transfer matrix 
calculationsJ 4~ This fact is gratifying, since it is an indication that the 
model studied indeed falls into the Ising universality class, as expected. 
Note that for a given universality class Ut, ~ must take a universal value, 
independent of the irrelevant parameters of the Hamiltonian. (6) 

In principle, the "flow diagram" Fig. 4 could be used to deduce the 
critical coupling/~c. In practice, it is convenient to plot U~~ ~ for various 
pairs L, L' and look at which coupling this ratio intersects unity (Fig. 5). 
If---and only if--all pairs (L, L') intersect in a unique point, the whole 
range of sizes studied belongs to the asymptotic regime L ~  ~ ,  where 
finite-size scaling is valid and the abscissa value of this intersection point 
can be taken as estimate of ~o.(6) In practice, of course, we expect some 
corrections to finite-size scaling, particularly since the chosen values of L 
are not very large; these corrections lead to some scatter obtained in the 
estimates for ~ from various pairs (L, L'). Figure 5 shows that this scatter 
is rather small for ~ = 2.5, the case in which it is still rather close to the 
Ising limit because of the pronounced double-peak structure for the single- 
site distribution (Fig. 1 ). The scatter is rather pronounced for the case ~ =/~ 
(~c = 0.175), which is further in the crossover regime between Ising and dis- 
placive behavior, as is also clear from the shallow structure of the single- 
site distribution. 

Finally, Fig. 6(a) presents our phase diagram in the ~ -/~-plane, show- 
ing the line ~c(fl) separating the regime of the disordered phase from the 
regime of the ordered phase. We also include the value of the local 
cumulant, U l~ --~rit [eq. (19)] in this figure, for the respective critical point. 

U~~ is not a universal quantity of the model, it varies from Unlike U,~ _~,~ 
U~C~ = ~- at the Ising limit ( ~  -~ ~ ,  ~r ~ 0.441 ) to U~~ = 0 at the displacive 
limit [(~o ~ oo, ~ = 4 ~  in eq. ( l lb ) ] .  Transformation of our data for g~(~) 
to the representation in terms of the variables K, 7~ of Ref. 24 reveals 
excellent agreement with the results of Burkhardt and Kinzel(24); see 
Fig. 6(b). Our results on the critical line are also in agreement with the 
much more precise work based on the extrapolation of series 
expansions. (37) 
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5. T E M P E R A T U R E  D E P E N D E N C E  OF T H E  L O C A L - O R D E R  
P A R A M  ETER F L U C T U A T I O N  

Recently it has been suggested that the local density fluctuation, 
(P2oc) _ (p)Z, of fluids such as N2 near their critical point can be inferred 
from vibrational Raman spectra, and a linear variation of 
ln[ (P~oc) _ (p)2]  as a function of (T /Tc  - 1) was found/32) Of course, this 
is consistent with the fact that the local-order parameter fluctuation stays 
finite at Tc; it cannot diverge at criticality while the global order parameter 
fluctuation does diverge [cf. eq. (17)]. In fact it is likely that the local-order 
parameter fluctuation is accessible for other transitions, too, by suitable 
experimental methods; thus, we present here Monte-Carlo results on the 
temperature dependence of this quantity, including unpublished previous 
data on Ising models at various dimensionalities. (6'41) We also a give a brief 
discussion of the background theory (6) on this quantity, to clarify questions 
which were recently raised. (33'42) 

Figure 7 shows data for (m2) l~176 plotted vs ~ as obtained from the 
present work, as well as corresponding data for the two-dimensional Ising 
model. Of course, there the single-site magnetization square S 2= 1 is 
meaningless, but the quantity of interest is the mean-square magnetization 
(~b 2) of subblocks of linear dimension l. It is seen that the shape of these 
curves for both models is rather similar; both (m 2)l~ and ~ 2 )  are finite 
at criticality and have an inflection point there. On a restricted temperature 
scale very close to criticality, these data may indeed look linear as well as 
corresponding three-dimensional data (Fig. 8). 

It should be noted, however, that the temperature dependence of both 
(m2) 1~ and (q~2) expected on theoretical grounds near Tc is not strictly 
linear, but rather there should be an energy-like singularity (6) which, for 
the Ising universality class in d=  2, is 

( m 2 ) ' ~ 1 7 6  . . .  (20a) 

where C1, C2 are constants while in the general case, where the specific 
heat exhibits a singularity proportional to (T/Tc- 1 )-  ~ [exponent e should 
not be confused with the coupling parameter ~ in eq. (11 )], one predicts 

= ( m  ) re+C1  - 1  +C2 - 1  + ' " T > T  c (20b) 

and analogous expressions hold for T< Tc. It is this energy-type singularity 
which is responsible for the fact that there is an inflection point of the cur- 
ves in Fig. 7. Of course, since the total size of the simulated systems is 
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finite, there is also a finite-size rounding  of  the specific heat singularity in 
our  simulations, and thus an actual divergence of  the slope of  the curves in 

Fig. 7 at To is no t  seen. 
While eq. (20) also applies to a subsystem of linear dimension l of  an 

infinite system, it does not  apply to the magnet izat ion square of  a finite 
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system, since there occurs no singular behavior in the latter case 
whatsoever FC1, C], C ] ,  C~ are constants]  

( ~ b ) , , T o -  C1 - 1 - C~- - 1 + " -  (21a) 

( ) ( 
This conclusion is corroborated by the data in Fig. 8 which show a 
linearity over a wide temperature range in a case corresponding to 
eq. (21b). However, the size dependences of the terms at Tc are the same 

(~a)l, Tc~l-2#/v, (M2)LozL -2~/v (22) 
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where/? denotes the order-parameter exponent and v the correlation length 
exponent, and we assume the validity of hyperscaling (dv = 7 + 2/~, 7 being 
the susceptibility exponent). Equation (22) then implies that the maximum 
value of the susceptibility X~ a~, cf. eq. (17) with N = L  a, scales as 
)~a~ ~,-~7/~ [In the mean-field limit, however, hyperscaling is invalid, and L ~ t ~  , 

one rather has ZT ~x oc V ~/2 = Ld/2. (43)] While in the subsystem geometry the 
maximum slope of ( ~ 2 ) t  occurs precisely at the T~ of the infinite system 
[and is infinite there if c~ ~>0], the maximum slope of (M'2)L in general 
occurs at a shifted Tr Similarly, the quantity (M2)c  - ( [MI)~  has a 
rounded maximum at T~(L), while the analogous reduced fluctuation 
(~ 2 ) l - (1~01 ) 2  has a true cusp at T~, since ( [~[ ) t=B(1 -T /T~)~  
independent of l, while ( I M ] ) c  does not vanish at T~(L) or T~(~), respec- 
tively, and is also a smooth nonsingular function of temperature. Thus, for 
T <  To, eq. (21) is replaced by 

- 

( _Z3 - B  2 1 T J  + ' "  (23a) 

( M Z ) c _ ( I M I  2_  (_~ ) ( ~  )2 ) L -  (MZ)L.T~-- C;  - 1 - C;' - 1 . . . .  (23b) 

Note that eq. (23b) holds for both T >  T~ and T <  T~ and has the same 
form as eq. (21b). 

6. F I N I T E - S I Z E  S C A L I N G  

The finite-size scaling hypothesis (34~ implies that the finite-system 
magnetization 34 c and susceptibility ZL can be scaled as functions of the 
linear dimension L and the reduced coupling t = 1 - ~r as follows 

29IIL ~/v = M(tL1/V), t ~ O, L ~ oo (24a) 

geL -#v = f~(tL~/V), t ~ 0, L ~ oo (24b) 

where /r 7, v are the critical exponents and M, ~ the respective scaling 
functions. Indeed eq. (24) works nicely already for L = 5 to L = 60, the 
range considered here, for the d = 2  Ising model(35); there, corrections to 
finite-size scaling are so small that even rather small systems are already 
rather close to the asymptotic limit considered in eq. (24). 

Figures 9-13 show that this is no longer true for the model eq. (11), 
particularly if one moves closer toward the displacive limit. As concluded 
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previously, ~22'24) we do expect that the exponents along the whole critical 
line ~ =/7o(~) should retain the Ising va lues , / /=  1/8, 7 = 7/4, v = 1.0 in our 
case, ~s) apart from the displacive limit, where the exponents should jump 
discontinuously to their mean-field values # = v = �89 Y = 1. Since we have 
determined ~ ( ~ )  independently from the cumulant analysis, Fig. 5, there is 
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no adjustable parameter in eq. (24) and the family of curves shown in 
Fig. 2 (or Fig. 3) should collapse in the representation of eq. (24) on a 
single curve, the scaling function. This "data collapsing" still works rather 
well for the case ~ = 2.5, ~ = 0.428 (Figs. 9a, 10a) and the scatter of the 
points is not significantly improved by choosing other values of the 

> 

~ L  
__1 

K 

~E 

I ~.=0.~75 

~r 

v =  1.00 

0.1 

: ,  L,5 
,~ L=10 

L=30 
§ L=60 

~t =0.~75 

~c =0.175 

13 =0.125 

v=O 80 
01 

0.1 

~/~ :~: <i~ < X 

~o 

"~ '-~ ,:~ ,:, 

+ "~ 

"t 
4- + 

+ 

+ + 

::<o ,~,.~?• 

+ 

+~ 

§ ~ 

§ + 
+ 

1 10 100 

Fig. 11. Plot of ~ L L  #h versus tL 1Iv for the case ~ = ~  (~c=0.175, for the model eq. ( l l a )  
and L =  5, 10, 30, 60, as indicated, for the choice of Ising exponents (a )#  =0.125, v = 1.0 and 
(b) #=0.125, v = 0.80. 



Fini te -Size  Scal ing Analysis of  t h e  ~4 Field Theory  775 

exponents (see, e.g., Figs. 9b, 10b). But there is dramatic scatter for the 
cases closer to the displacive limit. For example, Figs. l l (a) ,  12(a) show 
the data for ~ = ]~ (fie = 0.175); in this case a significantly better fit would 
be obtained if we choose a significantly lower value of v, v ~ 0.8 (Figs. 1 lb, 
12b). However, we think that this observation just reflects that we have 
entered the crossover regime toward the displacive limit: in this crossover 
regime the asymptotic exponents are still the Ising ones, but one must get 
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closer and closer to criticality the closer one gets to the displacive limit in 
order to reach the asymptotic critical region. In fact, the scatter of 
estimates for ~c obtained from the cumulant intersections (Fig. 5b) proves 

that the sizes used here are not in the asymptotic region where finite-size 
scaling holds, in the present case. Therefore, the apparently good fit seen in 
Figs. l l (b),  12(b) is somewhat meaningless; at best, v~0 .8  can be inter- 
preted as an "effective exponent" seen in some intermediate regime in the 
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crossover region. In no case could the claim of 7 ~ 2 of Ref. 18 for the con- 
tinuous spin Ising model explain our data, which imply an effective 
exponent of ~ ~ 1.2 to 1.4 (Fig. 12b). 

The straight lines to which the scaling functions &t(x), ~(x) tend for 
large x can be represented by the following power laws (for the coupling 
g=2 .5 )  

~r ~ 1.3x ~ )~(x) ~ 0.023x 1.75, ~r > ~ro (25a) 

~r(x) ~ 0.6x - ~ ~ ( x ) ~  1.50x -z75, f l>~c  (25b) 

Here we have chosen for the exponents the values theoretically expected for 
the Ising model in order to be able to estimate roughly the critical 
amplitudes B, C +, C -  in the relations 3~r = Bt p, Z + = C + ( - t )  -~, ZLt  ~ 
as B ~  1.3, C + ~ 1.50, C -  -~0.023; the amplitude ratio C+/C - ~ 6 5  within 
our rather large errors is consistent with the value C+/C = 37.7 known 
for the d =  2 Ising model. (44) Note that the first relation in eq. (25b) follows 
from putting M L w , ( M 2 ) m = ( Z z J L a ) m ~ ( - - t ) ~ / 2 .  As a further incon- 
sistency of the scaling plot involving effective exponents, Fig. l l (b) ,  we 
note that the analogous relations for _M(x) would read ~ r (x )=2 .1x  ~ 
(t > 0) and ~ r ( x ) =  2.6x 1.~9; i.e., imply exponents /~, ~, distinctly different 
from those used to scale the data. 

7. I M P L I C A T I O N S  A B O U T  C O A R S E - G R A I N I N G  OF THE 
ISING M O D E L  

For the theory of spinodal decomposition (3'4'1~ one is less interested in 
critical phenomena but rather wishes to use a coarse-grained Hamiltonian 
where the coarse-graining length l is no longer small in comparison to the 
correlation length ~. While near a nonmeanfield critical point one expects 
the resulting coarse-grained Hamiltonian to be more complicated than 
eq. (9), (5) eq. (9) is appropriate in a mean-field critical region (which occurs 
for medium range of the forces not too close to the critical point, for 
polymer mixtures etc.; see e.g., Ref. 45). Then it is appropriate to use eq. (9) 
and identify ~ with ~Mv, which implies in the normalization of eq. (11 ) that 

and /~ are comparable [ ~ = ~  is reached for (~MF//) 2= 1/(2(2d+1))] .  
This was a motivation to study the model with ~ =/~ more closely, as dis- 
cussed in the previous section. 

However, in the theory of spinodal decomposition, one not only uses 
eq. (9) but also often (Ref. 4) makes the further assumption that the 
reduced distribution function pl(~t) can be approximated as a sum of two 
Gaussians. Figure 14 shows that this double-Gaussian approximation is 
fairly reasonable in the regime of the ordered phase, but becomes 
increasingly inaccurate as the critical point is approached. 

822/44/5-6-5 



778 Milchev, Heermann, and Binder 

L I 

a2 

.5 

,4 

.3 

.2 

.1 

0 
0 

I I , ,  I I ' 1  I , I ~ I  

10 20  3 0  4 0  5 0  6 0  70  8 0  9 0  100 
m 

Fig. 14. Plot of the reduced single-site distribution function P(m) for the model eq. (lla) for 
the choice (a)~ = 2.5 and (b)~= 0.44. Full curves show the double-Gaussian approximation. 

We now return to the problem of establishing an explicit relation 
between the microscopic Ising Hamiltonian eq. (1) and the associated 
coarse-grained Hamiltonian eq. (4a). Assuming that ~ L w  in eq. (4a) can 
be taken of the simple form of eq. (5), with higher-order terms omitted, we 
ask: Which choice of parameters r, u, and C in eq. (5) - -or  ~ and ~ in the 
rescaled version--corresponds best to eq. (1) for a reasonable choice of the 
coarse-graining length (e.g., l =  5, 10, or 15, etc.)? Using both the data of 
Ref. 6 where pt(~t)  was investigated, and the present work where p(m) for 
eq. (11) is calculated, we can give a (preliminary) answer to this question 
by choosing the parameters such that a reasonable matching of p~(~)  and 
p(m) is obtained (for the entire critical region of both models). The extent 
to which such a matching can work is nontrivial, since it is not so clear to 
which extent eq. (5) is a good approximation to the full ~f~6Lw. 

At this point one should not confuse ~'~Lw with the fixed-point 
Hamiltonian ~q~* which is obtained after infinite iterations of the renor- 
realization group transformation by which short-wave length fluctuations 
(starting on the length scale l) are successively integrated out: in ~ *  
irrelevant higher-order terms have died out while there still should be such 
terms allowed for in ~ L w .  However, since the accuracy of the present 
study does not warrant the attempt to fit too many parameters, we have 
not included any such higher-order terms in our study. 

In order to check this matching of the two models in practice, we 
proceed as follows: First of all, the Ising critically (J/kBTo) must corres- 
pond to a point on the critical line ~=~o(~),  but this does not specify 
which point. This point is specified, however, if we request p t (~t ) r= rc and 
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p(m)j~= L to be equivalent. Since for l = 5 to 15 the local cumulant U~~ = 
1 ( , / , ~ ) r d 3 (  2 2 ~ 1 ; o ~  

- -  ~t )Tr ~ v .  ~ 0,52, (6) we must require ~ ~ 2.50 since a plot 
of U 1~ [eq. (19)] versus ~ along the critical line shows (Fig. 6a). 

The next question concerns the relation of the temperature scale of Tc 
to the scale of (1-fl//7o) occurring in our model. This question can be 
answered, for instance, from requesting that the temperature dependence of 
U~ ~162 in the lsing model matches that of U l~ for the 4 4 model with 

= 2.50, i.e. 

U~~ I~i~gmode, ~ UI~162 (26) 

The resulting mapping of the temperature scale on the scale of the 
parameter /7 is presented in Fig. 15. It is seen that a rather substantial 
variation of the cooupling constant /7 corresponds to a rather small 
variation of T/Tc only. 

Using now the relation T(/7) between the scales of T and/7 established 
in Fig. 15, we can use the data for {(J92)1 and (m2)  1~ as shown in Fig. 7 to 
infer the temperature dependence of the combination of parameters 
involved in the normalization of eq. (10) to eq. ( l la) ,  i.e. 

(q52)t ] T(/7)/(m 2 )1o~ I]~ = [ --(r + 2dC)/u] (27) 

v/Ir 

1.02 

1.01 

1.00 

.99 

.98 

.97 

I I I I I l I 

.7 .8 .9 1.0 1.1 1.2 1.3 13c/p 

Fig. 15. Relationship between the temperature variable in the Ising model and the ~b 4 model 
for three choices of coarse-graining length l (1= 5, 10, 15) as derived from eq. (26). 
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This is shown in Fig. 16(a) for the three values of l used in Fig. 15. It is 
seen that eq. (27) again yields a smooth function of temperature, as 
required because the parameters of the coarse-grained Hamiltonian must 
be nonsingular. Since ~ = -C(r + 2dC)/u, division of the function ~ = ~(T) 
(Fig. 15) with eq. (27) yields the temperature dependence of the constant C. 
This is shown in Fig. 16(b). As it should be, C depends only weakly on 
temperature. Using now the relation (C/j~)2 ~ = u we also obtain the con- 
stant u, and from ~(T), C, r, u we straightforwardly derive r(T). Remem- 
bering that eq. (5) is related to eq. (4a) by a rescaling of the lattice by a fac- 
tor l, we conclude rt(T)=l-dr(T), ul= l-du, and Ct= 12-dc. In this way 
the parameters of the free-energy functional can be obtained explicitly. 

Unfortunately, the accuracy of the presently used Monte-Carlo results 
is too limited to take the numbers that would follow from Figs. 15 and 16 

V 

0 I 

.3 

t--5 

./4 .5 

A 
I.--- 

t5 

i=5/  

0 i i i i 

96 98 1.0 t.02 T/To 

Fig. 16. (a) Plot of the ratio ( ~ 2 ) l / ( m 2 ) l o e  , where (q~2)t is chosen at a temperature T(]~) 
corresponding to ~ according to eq. (14), versus ~ for two choices of l. (b) Plot of the coef- 
ficient Cl(T) versus T for two choices of/. 
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very seriously. For example, for / = 5  we would obtain u(Te)~16.5,  
r(Tc) ~ -67.1 while for l =  10 we would obtain u ( T c ) ~  23, r ( T e ) ~  -80.1. 
The lack of complete self-consistency of these numbers is recognized by 
considering the prediction for the magnetization of the original Ising model 
that would follow from Figs. 15 and 16 and the estimate for the amplitude 
B obtained in eq. (25a): Since near Te from Yang's exact solution (46) 

(SK)  =/}(1 -- T / T J / 8 ,  /} ,~ 1.22 (28) 

while from eqs. (2), (10), and (11) 

( S x )  = ( Os,(i) ) = ( re ( i ) )  [ - (r + 2dC)/u] 1/2 

= B[  1 - (L/]~)-] 1/8 [ _ (r + 2dC)/u ] 1/2 (29) 

Thus, we see that B =  B [ - ( r  + 2dC)/u]l/2[(dT/dfl)r~] 1/8 if the Ising model 
and the q54 model would match precisely. But from Figs. 15 and 16 we 
obtain for l = 5 (dT/d~)r~ ~ 0.134, - (r + 2dC)/u ~ 3.8, and hence/} ~ 1.97, 
while for l = 10 (dT/d~)rc ~ 0.053, - (r + 2dC)/u ~ 3.3, and hence/~ ~ 1.64. 
Thus, the two estimates do not exactly agree with each other, although 
they should because long-wavelength properties must be independent of the 
choice of the coarse-graining length. Moreover, neither of the estimates 
agree with the exact answer eq. (28). 

Of course, this difficulty is not unexpected: there is considerable uncer- 
tainty in our identification of the critical parameters ~, ]~e from matching 
the local cumulant U 1~ [eq. (19)] to the corresponding (not very 
accurate!) Ising data, c6~ since U l~ depends on ~ie only weakly (Fig. 6a), and 
a small error in U ~~176 would introduce a large error in ~ie" This in turn will 
affect the relation between T and/~ (Fig. 15) distinctly; in addition, the lat- 
ter relation will be affected by higher-order terms (q~6, etc.) in the coarse- 
grained Hamiltonian of the Ising model that surely are present in reality, 
but have not been included in our study. 

8. C O N C L U S I O N S  

In this paper we have undertaken a study of the q54 model on a square 
lattice, varying a parameter by which the model interpolates between the 
Ising limit and the displacive limit. A Monte-Carlo algorithm was used, 
where one draws the single-site variable q~(i) according to the single-site 
probability distribution so that standard techniques for the analysis of 
Monte-Carlo data could be applied. The techniques used include the 
cumulant intersection method, by which we located the line of critical 
points for the model, and finite-size scaling of order parameter and suscep- 
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tibility. Both techniques show pronounced difficulties, which we interpret 
as being due to the crossover from 2d-Ising to mean-field behavior. Thus, 
while our lattice sizes are sufficient to locate the critical line in close 
agreement with previous work using other techniques, substantially larger 
lattice sizes and better statistics will be required for any definitive 
statements on critical exponents and amplitudes of the model. We have not 
attempted to do this since, because of the continuum nature of the variable 
�9 (i), techniques to speed up the program such as multispin coding ~38) are 
not known, and even for currently available fast-vector computers very 
large amounts of computing time for this problem would be required. 

After this study had been completed, we learned of a recent study of 
Bruce (47) where by extensive computations on the DAP the Ising critical 
behavior has been verified for the model with r = -4C, the "border model" 
of Baker. (is) Although this model is not yet close to the displacive limit, the 
results of Ref. 47 and ours indicate that crossover effects limit its critical 
region. 

We have instead used our data for a preliminary feasibility check of 
the matching between the ~4 model and the coarse-grained Hamiltonian of 
the Ising model. The explicit form of the latter hitherto has not been 
known; in the present work a procedure has been illustrated by which the 
parameters of the Ginzburg-Landau-Wilson functional can be 
systematically determined, and rough estimates for the parameters involved 
in the leading terms have been obtained. 

It clearly would be interesting to study this problem further by perfor- 
ming high-precision simulations of medium-range Ising models, as well as 
of the present I~ 4 model and the full mapping between both families of 
models, including also higher-order terms; there should be a one-to-one 
correspondence between their critical lines. It also would be very 
interesting to study Ising models with super-antiferromagnetic order, since 
their Ginzburg-Landau-Wilson Hamiltonian should be of XY-type with 
cubic anisotropy. 
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